Intermunicipal Shoreline Management for Southeastern Cape Cod Bay

Project Team

Chris Miller and Bill Grafton, Town of Brewster Karen Johnson and Erin Burnham, Town of Dennis Nate Sears, Town of Orleans

MA Office of Coastal Zone Management
Steve McKenna, Cape & Islands Regional Coordinator

CGRASS Program, Center for Coastal Studies
Samantha McFarland, Assist. Program Director, CGRASS
Steve Mague, Program Director, CGRASS

Sustainable Coastal Solutions, Inc. John Ramsey, Principal PE

Coastal Geographic Research and Applied Science Program (CGRASS)

An applied science program established in 2020 to be an unbiased source of science-based, coastal geographic information that can be applied to the contemporary challenges and threats associated with changing climate conditions confronting Cape Cod communities.

Program Goal: To develop and visualize geospatial data to help Cape communities understand and confront emerging climate change threats in the coastal zone.

Research Focus:

- Use of physical and human coastal geographic data developed by CCS and other scientists to document and quantify past and present coastal change
- Development of information to inform regional system-based estimates of future shoreline conditions as the coast responds to rising sea levels and intense coastal storms
- Creation and ongoing maintenance of a public data portal that makes reliable and understandable geospatial data accessible to local municipalities, managers, and the public

Intermunicipal Shoreline Management for Southeastern Cape Cod Bay

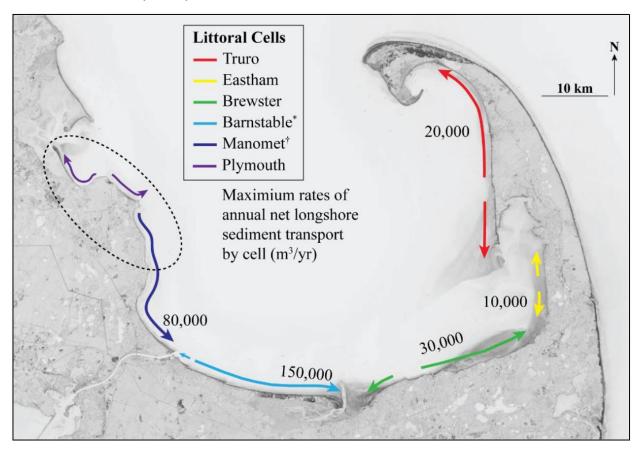
Goals

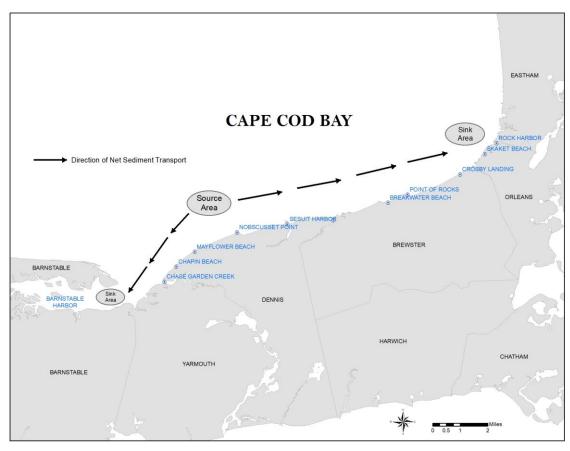
To maximize:

- The resiliency of the Cape Cod Bay shores of Dennis, Brewster, and Orleans through the application of consistent, complementary shoreline management strategies
- The ability of towns to work with natural processes and drivers of coastal change
- The potential of shorelines to operate independently of town boundaries and respond naturally to coastal hazards

Intermunicipal Shoreline Management for Southeastern Cape Cod Bay

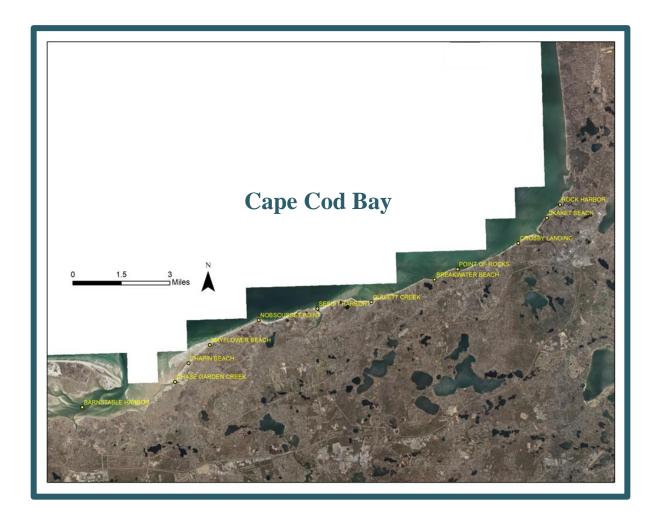
Process Focus

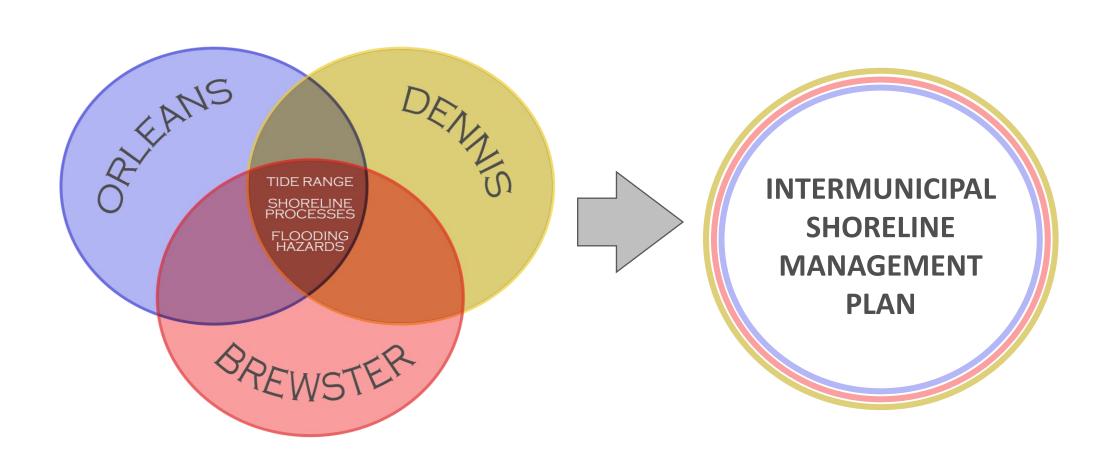

- Regional ------ 14<u>+</u> miles of north-facing shoreline from Rock Harbor, Orleans to Chase Garden Creek, Dennis
- Resource-based ------ Foundation based on current and evolving scientific data
- Multiple Phases ------ Initial focus on identifying existing, complementary management strategies and developing baseline natural resource & human use spatial data
- Fluid & Flexible------ Responsive to emerging challenges of a changing climate
- Ambitious Goals------ Visualizing data to make it accessible and applicable to the needs of local coastal managers and the public


Benefits of a Regional Approach

- More effective shoreline management results with unified systems-based approach
- Ability to apply contemporary scientific data across town lines to emerging coastal management challenges
- Increased Resiliency in Shoreline Infrastructure/Protection & More Effective Project Review Process
 - Uniform Management Principles, Policies, & Priorities
 - Common Performance Standards & Design Requirements
 - Standardized Project Conditions
- Increased Cost Efficiencies & Savings Potential
 - Economies of Scale
 - Nourishment
 - Project Cost Sharing
- Greater Leveraging of Grant Opportunities with 3 Towns

Organizing Framework


- Natural resiliency of SE shoreline dependent on the ability of coastal landforms to erode and, through the shared, natural longshore sediment transport system, provide a continuous supply of sand to downdrift areas
- Regional approach organized generally around the concept of <u>littoral cells</u>
 - Natural coastal compartments that transcend town boundaries & contain a complete cycle of sedimentation including sources, transport paths, and sinks



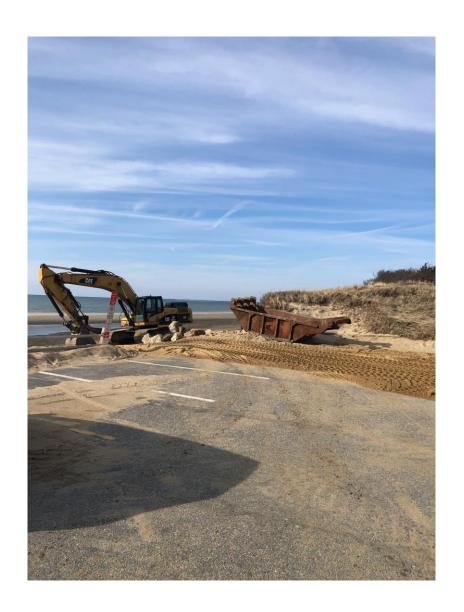
Characteristics of the Shared Shoreline

	<u>Orleans</u>		Brewster		<u>Dennis</u>		<u>Totals</u>	
Physical Characteristics								
Primary Summer Wind Direction	SW		SW		SW			
% Summer with Wind speed 20+ mph		18%		18%		18%		
Primary Winter Wind Direction	NW		NW		NW			
% Winter with Wind speed 20+ mph		36%		36%		36%		
Net Sediment Transport Direction	East		East		East/West			
Mean Tide Range (Ft.)	9.7		9.7		9.7 - 9.8			
100-Year Flood Plain (NAVD88, Ft.)	15 - 16		15 - 16		15 - 16			
		% of Total		% of Total		% of Total		% of Total
Shoreline Length (Miles)	1.2	8.7%	5.6	40.6%	7.0	50.7%	13.8	
Littoral Cell West (mi.)	0.0	0.0%	0.0	0.0%	2.2	100.0%	2.2	15.9%
Littoral Cell East (mi.)	1.2	10.3%	5.6	48.3%	4.8	41.4%	11.6	84.1%
Coastal Wetland Resources								
Coastal Bank (mi.)	0.0	0.0%	0.9	37.5%	1.5	62.5%	2.4	17.4%
% of Town Shoreline		0.0%		16.1%		21.4%		
% of Total Shoreline		0.0%		6.5%		10.9%		
Coastal Dune & Barrier Beach (mi.	1.1	11.5%	4.0	41.7%	4.5	46.9%	9.6	69.6%
% of Town Shoreline		91.7%		71.4%		64.3%		
% of Total Shoreline		8.0%		29.0%		32.6%		
Intertidal Flats (acres)	387.8	10.8%	2495.5	69.4%	713.0	19.8%	3596.3	
Sesuit Harbor West (mi.)	0.0	0.0%	0.0	0.0%	457.0	100.0%	457.0	12.7%
Sesuit Harbor East (mi.)	387.8	12.4%	2495.5	79.5%	256.0	8.2%	3139.3	87.3%
Avg Seaward Extent (Ft.)	2,666		3,676		840			
Salt Marsh (acres)	176.0	16.3%	251.5	23.2%	654.4	60.5%	1081.9	
ol II oli II								
Shoreline Alterations								
CES Length (Miles)	0.0	0.0%	0.9	16.1%	2.8	40.0%	3.7	26.8%
Littoral Cell West (mi.)	0.0	0.0%	0.0	0.0%	0.7	31.8%	0.7	31.8%
Littoral Cell East (mi.)	0.0	0.0%	0.9	16.1%	2.1	43.8%	3.0	25.9%
Grains (#)	1.0	2.6%	29.0	74.4%	9.0	23.1%	39.0	
Groins (#)		0.0%		0.0%	3.0	100.0%	39.0	7.7%
Littoral Cell West (mi.)	0.0		0.0					
Littoral Cell East (mi)	1.0	2.8%	29.0	80.6%	6.0	16.7%	36.0	92.3%

Comprehensive Management Framework

Task 1: Coastal Structures Inventory and Beach Nourishment Research

Coastal Structures Field Survey


- Update of 10-year-old state infrastructure inventory
- Baseline data regarding human alterations that may limit volume of sand available to coastal resources

Beach Nourishment Research and Site Identification

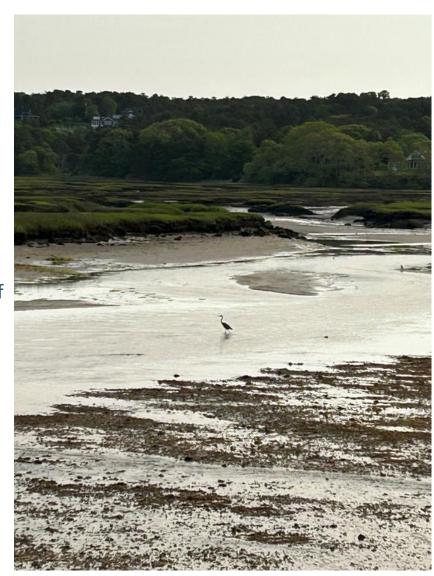
- Research of available town records for approximately 368 shorefront parcels
- Baseline data regarding human mitigation to supplement volume of sand available to coastal resources

Shoreline Nourishment Demand Analysis

• Estimate of potential future demand for beach nourishment along the southeastern shoreline

Task 2: Shoreline Management Framework

Memorandum of Agreement (MOA)


 Agreement to pursue an intermunicipal or regional management approach grounded in uniform, science-based strategies, principles, and policies that promote responsible stewardship of a shared shoreline

Draft Framework Components Approach

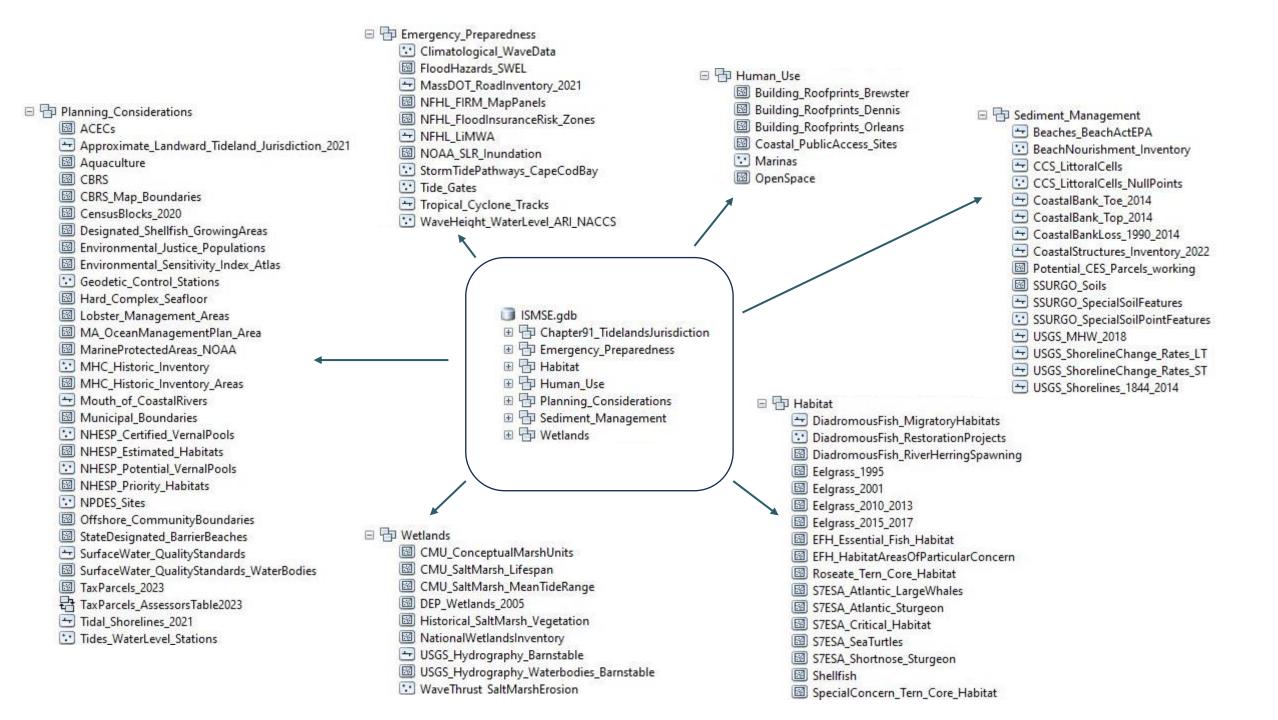
- Develop a set of 25 <u>uniform principles and policies</u> strategies grounded in the similarities of present 3-Town shoreline management approaches
- Emphasize standardized, science-based strategies for achieving the objectives of the state Wetlands regulations (310 CMR 10.)) and Local Wetland Bylaws
- Implement through consistent project level requirements for NOIs and accompanying Plans and standardized approval conditions for OOCs

Benefits of a Science-Based Approach

- Underlies current local Wetlands Bylaws and the Massachusetts wetlands regulations
- Supports flexible management strategies that can evolve in response to a changing climate

Task 3: Creation of an Intermunicipal Shoreline Management Geodatabase

Benefits of a Spatial Format


- Quickly analyze and summarize by location
- Layer regional information to identify patterns in data
- Methods for organizing, sharing and compiling data in a standardized way
- Data visualizations

Task Goals

- Compile and review existing relevant geospatial data
- Identify disparities and develop new regional layers based on local needs
- Deliver a useful management tool

Task 3: Creation of an Intermunicipal Shoreline Management Geodatabase

Subsequent Phases of Project – ISMP Implementation

Utilize A Public Data Portal to

- Support collaboration between the town partnership and other organizations
- Share data with non-GIS users
- Maximum use of data by town staff and the public without the need for specialized software
- Provide an online resource of interactive maps and applications that aid in the visualization and interpretation of coastal zone data

Comments or Questions?

Steve Mague smague@coastalstudies.org

Samantha Jo McFarland smcfarland@coastalstudies.org